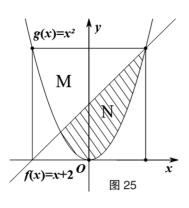
应考方略

A. $\frac{7}{32}$ B. $\frac{9}{32}$ C. $\frac{9}{16}$ D. $\frac{7}{16}$

解析:列出相应 的区域如图 25 所示: 区域M是正方形区 域, 区域 N 是阴影区 域, $S_{\text{ III }} = \int_{-1}^{2} (x+2-x^2)$ $dx = \frac{9}{2}$, 所以 $P \in N$ 的 概率为 $\frac{9}{32}$. 故选 B.

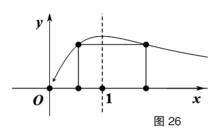
点评: 本题综合 考查了定积分与几何 概型,充分体现数形 结合的思想.



十、利用数形结合的思想解决其它问题

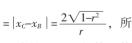
例 22. (2016年河南省六市高三第一次联考试题) 一矩形

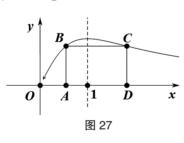
的一边在x轴上, 另两个顶点在函 数 $y = \frac{2x}{1+x^2}$ (x>0) 的图像上,如图 26、则此矩形绕 x 旋转成的几何体 的体积的最大值 是()



A. π B. $\frac{\pi}{3}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{2}$

解析: 如图 27, 设 AB=r, 则 $\frac{2x}{1+x^2}=r$, 化简 得 $rx^2-2x+r=0$, $x_B+x_C=$ $\frac{2}{\pi}$, $x_B \cdot x_C = 1$, 所以 |BC|





以旋转后的几何体的体

积 $V(r)=\pi r^2 \cdot |BC|=2\pi \sqrt{r^2(1-r^2)} \leq \pi (r^2+1-r^2)=\pi$. 当且仅当 $r^2=$ $1-r^2$, 即 $r=\frac{\sqrt{2}}{2}$ 时取得等号,所以此矩形绕 x 旋转成的几何 体的体积的最大值是 π . 故选 A.

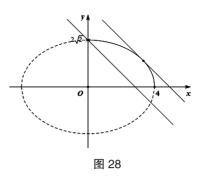
点评: 本题把"形"的问题转化为"数"的问题.

例 23. 求函数 $\mu = \sqrt{2t+4} + \sqrt{6-t}$ 的最值.

解析: 设 $x=\sqrt{2t+4}$, $y=\sqrt{6-t}$, 则 $\mu=x+y$,

且 $x^2+2y^2=16$ (0 $\leq x \leq 4$, 0 $\leq y \leq 2\sqrt{2}$), 所给函数化为 以 μ 为参数的直线方程 $\gamma=-x+\mu$, 它与椭圆 $x^2+2\gamma^2=16$ 在第一

象限的部分 (包括端 点)有公共点,如图 28. $\mu_{min} = 2\sqrt{2}$. 相切 于第一象限时, μ取 $\Rightarrow 3x^2 - 4\mu x + 2\mu^2 - 16 = 0$, 解 \triangle =0, 得 μ =±2 $\sqrt{6}$, $\Re \mu = 2\sqrt{6}$,



 $\therefore \mu_{\text{max}} = 2\sqrt{6}$.

点评:由于等号右端根号内t同为t的一次式,故作简单 换元 $\sqrt{2t+4} = m$. 无法转化出一元二次函数求最值:倘若对式 子平方处理,将会把问题复杂化,因此该题用常规解法显得 比较困难,考虑到式中有两个根号,故可采用两步换元,从 而把"数"的问题转化为"形"的问题。在处理相切时。又 转化为"数"的问题、这样"形"与"数"相互转化、问题 就迎刃而解.

数形结合的思想是中学数学极为重要的思想方法之一, 把代数式的精确刻画与几何图形的直观描述结合起来, 从而 使几何问题代数化,代数问题几何化,并进而使抽象思维和 形象思维结合起来,可以使许多复杂问题获得简捷的解法.但 是撇开"形"去孤立地研究"数",或忽视"数"去孤立地研 究"形",都会带来种种不良后果,因此数形结合解题,必须把 精确的数量关系刻画与图形的准确形象切实结合,才能互相 补充, 互相利用, 才能收到良好成效.

责任编辑 徐国坚

